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a b s t r a c t

Structural cables are composed of wires helically wound into strands, which, in turn, are wound around
a core. They have high redundancy and can be used to carry large tensile forces in many civil engineering
structures. Better dissipation and/or recentering capacity can be expected if the cable is composed of
shape memory alloy (SMA) wires in the austenite phase. Tensile tests were performed on strands made
of CuAlBe SMA wires to characterize their behavior and demonstrate their potential utility as adaptive
or resilient tension elements. In particular, equivalent viscous damping and forward-transformation and
maximum stresses were determined for different strain amplitudes. Nearly ideal superelastic properties
were obtained up to 3% axial strain. The equivalent damping increased with strain, reaching a value of
4% for a strain amplitude of 5%. Strand experimental results were used to validate a two-dimensional
numericalmodel developed to estimate the strand response to axisymmetric loadswithin the superelastic
deformation range. Themodel relies on the linearization of thewire geometry and on amultilinear CuAlBe
wire stress–strain relationship. The proposed model adequately predicts the maximum strand stress and
the residual strains for different strain amplitudes.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Shapememory alloys (SMAs) are metallic alloys that are able to
recover their original shape through a phase transformation in the
material caused by the imposition of a temperature (shape mem-
ory effect) and/or stress field (pseudoelasticity or superelasticity).
These unique thermomechanical properties have made SMAs a
promising material for orthodontics, medical, and engineering ap-
plications. Basically, there are two phases associated with SMAs,
namely the austenite phase and the martensite phase. Austenite
is stable at high temperatures and low stresses whereas marten-
site is stable at low temperatures and high stresses. Four tem-
peratures define the phase transformation limits: martensite start
(MS), martensite finish (Mf ), austenite start (As), and austenite fin-
ish (Af ). Copper-based SMAs possess thermomechanical proper-
ties that make them ideal for energy dissipation and recentering
devices for structural applications. However, adequate dissipation
and recentering characteristics have only been achieved for small-
diameter SMA wires and rods tested as single elements in tension,
or in small-scale models tested in shaking tables [1–5]. Attempts
to achieve the same characteristics for larger sizes required in real
structures have been unsuccessful, due in part to the large variabil-
ity in mechanical properties, depending on the manufacturer and
thermal treatment used [6,7]. This variability makes it difficult to
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define representative material properties, needed for the design of
a real structure.

The use of structural cables made of small-diameter SMA wires
seems to be an alternative application of this material to civil
structures. Cables have high redundancy and can be used to
carry large tensile forces. Improved dissipation and/or recentering
capabilities can be expected, if the cable is formed by SMAwires in
the austenite phase.

Few tests results have been reported in the literature on SMA
cables subjected to axisymmetric loads. Reedlunn and Shaw [8]
conducted experiments on two commercially available Nitinol
cables. The specimens were uniaxially loaded in tension, and
infrared imaging was used to monitor transformation activity. The
elongation ratewas rather low. The response qualitativelymatches
the typical behavior of NiTi wires when the helix angle is low,
but it differs substantially for a larger helix angle. In the latter,
the hysteresis boucles are rather small and so is the energy loss
per cycle. Additionally, in both cases, residual deformations are
apparent.

This paper presents results from experimental and numeri-
cal studies conducted on strands made of CuAlBe SMA wires.
The objectives of these studies were to characterize the behav-
ior of SMA strands and explore their potential utility as adaptive
or resilient tension elements. Parallel and twisted strands were
uniaxially loaded considering constant and variable strain ampli-
tudes. Then, the equivalent viscous damping (ξ), and forward-
transformation (σt) and ultimate (σu) stresses were determined
from the stress–strain curves, for each maximum strain. In ad-
dition, strand experimental results were used to validate a two-
dimensional (2D) analytical discrete model to estimate the cable
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Fig. 1. Cable geometry.

response under axisymmetric loads. In this model, the wire geom-
etry is linearized and, based on the work by Motahari and Ghas-
semieh [9], a multilinear CuAlBe SMAwire stress–strain curve was
used for computational purposes. The original work by Motahari
andGhassemieh [9]was extended to include the residual deforma-
tion experienced by each CuAlBe SMA wire after each strain cycle.
Comparisons were made between the responses of strands with
parallel and twisted configurations, and between the responses of
the strands and individual wire.

2. Cable characterization and modeling

A cable is a hierarchical structure constructed by wrapping in a
helical fashion a group of thin wires around a single straight wire
to form a strand. A group of strands is then laid helically around
a straight core to form a cable (twisted wire cable). Strands can
be wrapped around the core in concentric circles to formwhat it is
called the layers of the cable. For a cable subjected to axisymmetric
loads, it is assumed that the initial and deformed configurations
of the wires can be described by a circular helix. Hence, three
geometric parameters are needed to describe awire configuration:
the helix radius (a); the projected length of the rope component
on the core axis (L); and the pitch distance (p), as shown in Fig. 1.
The helix radius is the distance measured from the core axis to
the centerline of the wire and the pitch distance of a wire is the
distance along the core component, measured for a variation of a
swept angle from 0 to 2π .

A cable can be a critical component in many engineering ap-
plications, including cranes, lifts, mine hoisting, bridges, electrical
conductors, offshore mooring, and so on. Different classes of ca-
bles, suited for different purposes, have a different number and
arrangement of rope elements within the cable cross-section, and
the cable elements can be made of different materials. Each field
of cable application has developed a specific body of knowledge,
based on extensive testing and field experience, leading to empir-
ical rules for each particular application. Unifying these empirical
rules under some general mathematical andmechanics-based the-
ory would allow a better understanding, and in the long term, a
better prediction of the mechanical behavior of cables than cur-
rent methods permit. In addition, a unifiedmodeling approach can
help reduce the need for expensive tests under a variety of oper-
ating conditions. Thus, due to their extensive use and the need to
predict their behavior, several researchers have developed analyt-
ical models to estimate the cable response based on the material
properties and the geometrical arrangement of the wires [10,11].

Several 2D mathematical models are currently available to
predict the response of metallic and synthetic-fiber cables
subjected to axisymmetric loads. Thesemodels can be divided into
two categories according to their formulation: discrete models,
in which equations are established for each individual wire and
then assembled to obtain the response of the cable; and semi-
continuum models, in which each wire layer is replaced by a
transversely isotropic layer. In this study, emphasis is placed
on discrete models, which are the most commonly employed
in numerical studies. According to Jolicoeur and Cardou [12]
and Cardou and Jolicoeur [10], current discrete mathematical
models for predicting metallic cable response can essentially be
divided into two categories, depending on the types of hypotheses
employed: (a) fiber models, in which the wires can develop only
tensile forces [13–18]; and (b) rod models, which are an extension
of the fibermodel, inwhich thewires can develop tensile and shear
forces, as well as bending and twisting moments [19–25].

A major contribution to discrete fiber models has been made
by Leech [26,27], for the case of synthetic-fiber cables. This
discrete fiber model considers the hierarchical structure of a
cable’s geometry, and it addresses the effects of frictional forces,
transverse deformation of the cable cross-section, heat generation
due to fiber hysteresis, and fatigue on the cable behavior [28].
Beltran and Williamson [29,30] have presented a discrete rod
model to simulate synthetic-fiber cable responses under axial
loads. This model relies on previous models by Costello [22] and
Leech [27], but focuses on taking into account the degradation of
mechanical cable properties as a function of loading history and
estimating the effect of broken cable elements on the overall cable
response.

3. SMA constitutive models

During the last two decades, a lot of research has been con-
ducted to develop SMA constitutive models. Most of these models
can be classified in the following two categories: micromechanics-
based models and phenomenological models. Micromechanics-
based models give a constitutive relation for a single grain and
then, through the use of averaging techniques, the constitutive re-
lations for a representative volume element (RVE) are obtained.
Although these models provide valuable information about the
phase transformation process, they require a large amount of nu-
merical computation to be performed and they are not easily ap-
plicable at the structure level. Thus, the use of such models to
estimate the overall response of SMA structures is limited (see,
among others, [31–33]). Phenomenological models are built on the
principles of thermodynamics with internal variables to describe
the material behavior and/or direct curve fitting of experimental
data. These models are quite accurate in predicting the uniaxial
response of SMAs and can be easily integrated into numerical al-
gorithms developed to analyze structural systems (e.g. the finite
element method) (see, among others, [34–37]).

4. Experimental procedure and results

Four 15 cm long strand specimens were constructed from
0.5 mm diameter CuAlBe wires, furnished by Trefimétaux, France.
The nominal composition of the wires was Cu–11.8 wt%Al–0.5
wt%Be. The phase transformation temperatures reported by the
manufacturer were Mf = −47 °C, Ms = −18 °C, As = −20 °C,
and Af = 2 °C. Since ambient temperatures for civil engineering
structures are usually greater than the Af transition temperature of
2 °C, the material was expected to operate within its superelastic
range.

Based on previous research [1], it was decided to heat the
wires at 700 °C for 20 s, which resulted in a nominal grain size
of 60 µm, as shown in Fig. 2. Two specimens were formed by 6
wires wrapped around a single straight wire, followed by 12 wires



2912 J.F. Beltran et al. / Engineering Structures 33 (2011) 2910–2918
Fig. 2. Micrograph of a specimen heated at 700 °C during 20 s.

wrapped around them. The nominal outer diameter was 2.5 mm.
The helix angle of the exterior wires was 17.5°. The other two
specimens were made using the same number of wires, but in
parallel. No thermal treatment was applied after manufacturing
the specimens, to avoid any grain size increase.

The four strands were tested under cyclic tension at the
Structural Engineering and Material Research Laboratory, Georgia
Institute of Technology. The specimens were uniaxially loaded by
an MTS electromechanical load frame, using a 250 kN load cell
to monitor the force, while the grip displacement was measured
by an internal linear variable differential transformer (LVDT), as
shown in Fig. 3. The strand elongation was estimated from the
grip displacement, considering that the compliance of the testing
machine accounted for less than 0.1% of this value.

Two patterns of controlled displacements were applied, based
on an equivalent strain level calculated as the total elongation
of the strand divided by the initial distance between the grips.
The first pattern, of 20 cycles at 2% equivalent strain amplitude,
was followed by the second pattern of 22 cycles with increasing
equivalent strain amplitudes varying from 0.5% to 8%, applied in
the following sequence: 3 cycles at 0.5%, 1 cycle at 0.8%, 1.0%,
and 1.5%, 5 cycles at 2.2%, 1 cycle at 2.5%, 3.0%, 3.5%, 4.0% and
4.5%, 5 cycles at 5.0%, and 1 cycle at 8.0%. The second pattern
was used to determine the superelastic limit and the effect of
previous deformation. The equivalent strain rate was 0.1 mm/s.
For all specimens, the initial distance between the grips was about
10 cm, at zero load. All tests were performed at room temperature.
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Fig. 4. Stress–strain curves. 20 cycles at 2% strain (a) twisted strand, (b) parallel
strand.

Fig. 4 shows equivalent stress–strain relationships for the
twisted and the parallel strands subjected to the first pattern
of deformation. The equivalent stress developed by each strand
specimen was calculated as P/Ao, where P is the axial load on
the strand and Ao is the initial area of the total number of wires
conforming the strand. The equivalent stress–strain curves in Fig. 4
a b
MTS TestStar Controller

MTS Test System 810
with MTS 647 wedge grips

Thermometer

Data Acquisition System

Fig. 3. Experimental setup.
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Fig. 5. Strand response for increasing strain amplitudes and single wire response
(a) twisted strand, (b) parallel strand.

are quite similar, and resemble the response of a single wire,
presented in a previous work [1]. The first cycle was somewhat
different from the others, while all the rest were very close to each
other. This effect, dubbed ‘‘training’’ by previous researchers [38],
has been observed in tests of individual wires as well [1,6].

Fig. 5 shows the curves for the second pattern of deformation,
with the monotonic curve obtained for a single wire tested at
25 °C overlaid on top. The second pattern was applied to the
parallel strand immediately after the first pattern; that explains the
offset in Fig. 5(b). As is expected for CuAlBe polycrystal samples,
no distinct plateau is visible; instead, a slightly positive tangent
stiffness is apparent. The residual deformations are smaller than
those reported by Reedlunn and Shaw [8] for NiTi cables. No
difference between the first cycle and the others can be noticed
up to 2.2%, due to the previous training imposed by the constant
equivalent strain amplitude tests. This is not the case for strains
larger than that previous limit.

Table 1 shows the equivalent elastic modulus, E, forward
transformation stress, σt , and maximum tensile stress, σmax, for
the four strands, calculated from the experimental results, and
for a single wire, reported by Marivil [39]. All the parameters
have been determined excluding the first cycle. The equivalent
elasticmodulus of the strands and thewire decreases as the strains
get larger. Experimental results confirm that larger equivalent
elastic modulus and transformation stresses can be expected for
the parallel strand compared to the twisted strand, due to the
inclination of the wires in the latter. The single wire and strand
properties have similar values for similar nominal strains.
5. Analytical model

5.1. Cable response model

As previously stated, for modeling purposes it is assumed that
the initial and deformed configuration of a thin wire can be
described by a circular helix. By definition, a circular helix curve
maintains a constant angle (helix angle) with a fixed line in space.
This fixed line is the longitudinal axis of the strand, and the helix
angle θ is defined as the angle between the axis of the component
and the axis of the core component (Fig. 1). The helix angle θ can
be computed using the following expression:

tan(θ) =
2πa
p
. (1)

Due to its helical nature, a twisted wire cable possesses nonlinear
strain–displacement relationships, and its axial behavior exhibits
coupling between tension and torsion. Some researchers [24,40],
however, have validated the use of the linearized version of
the theory to estimate the cable response under axisymmetric
loads. The linearized theory is based on the linearization of the
strain–displacement relationships of a cable component and the
components’ constitutive laws, and on the use of the initial
cable configuration as the reference configuration. The validation
procedure was performed using comparisons among different
linear models [12,24], nonlinear models [24,41], and experimental
data on steel wire cables and polyester ropes. After extensive
parametric studies on cables with different geometric parameters
and with linear and nonlinear constitutive laws, it was concluded
that linear models (fiber and rod models) are quite satisfactory to
estimate the overall cable response (cable stiffness, breaking axial
load, and breaking axial strain) for cables with helix angle less than
20° having both ends restricted to rotation [40].

The linearized relationship of the wire axial strain εi in terms of
the cable axial strain ε and the angle of twist per unit length ϕ is
given by ([17,18])

εi = ε cos2 θ0i + ϕa0i cos θ0i sin θ0i, (2)
where a0i and θ0i are the helix radius and the helix angle of wire
i, respectively. As such, the linearized overall behavior of a cable
subjected to axisymmetric loading can be written in the following
incremental form:
∆F
∆M


=

[
Fε Fϕ
Mε Mϕ

]
·


∆ε
∆ϕ


, (3)

where Fε , Fϕ , Mε , and Mϕ are the tangent stiffness coefficients;
∆F and ∆M are the increments in axial force and axial moment
(torsion), respectively; and∆ε and∆ϕ are the increments in axial
deformation and axial rotation per unit length, respectively. The
axial strains are defined as follows.∆ε = ∆u/L and∆ϕ = ∆ψ/L,
where ∆u and ∆ψ are the axial displacement and axial rotation,
respectively (Fig. 1), and L is the initial cable length. Considering the
fiber model, the tangent stiffness coefficients have the following
form [12]:

Fε = (AE)c +

n−
i=1

(AE)i cos
3 θ0i (4a)

Fϕ = Mε +

n−
i=1

(AE)i a0i cos
2 θ0i sin θ0i (4b)

Mϕ = (GJ)c +

n−
i=1

(AE)i a
2
0i cos θ0i sin

2 θ0i, (4c)

where the subscript c refers to the cable core; (AE)i is the axial
stiffness of wire i, with Ai being the cross-sectional area and Ei,
defined as (dσ/dε)i, being the tangentmodulus ofwire i for a given
wire axial deformation εi.
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Table 1
Equivalent elastic modulus (E), forward transformation stress (σ t ), and maximum stress (σmax) determined from the
experimental results.

Specimen type Strain amplitude E1 E2 σt1 σt2 σmax1 σmax2
(%) (GPa) (GPa) (MPa) (MPa) (MPa) (MPa)

Twisted strand 2.0 51.7 51.5 255.5 205 477.5 460.8
Parallel strand 2.0 56.2 59.5 291.7 287.4 506.7 501.2
Twisted strand 5.0 38.3 41.3 207.2 218.4 551.4 605.8
Parallel strand 5.0 45.5 47.4 275 305.4 635.1 594.8
Wire 0.8 99.0 300.0 441.0
Wire 1.5 79.0 270.0 493.0
Wire 2.2 52.0 240.0 546.0
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Fig. 6. Constitutive law of CuAlBe SMA wires.

5.2. Constitutive law of SMA wires

One of the phenomenological models available in the literature
is the model developed by Motahari and Ghassemieh [9]. This
model was used in this research due to its easy implementation
in a numerical model because it establishes a multilinear one-
dimensional constitutive law to predict the behavior of SMA
wires under different loading conditions (Fig. 6). This model is
described by the following parameters: austenite elastic stiffness
EA; martensite elastic stiffness EM ; martensite start critical stress
σMs; martensite finish critical stress and strain (σMf , εMf ); austenite
start critical strain εAs; and the austenite finish critical stress
and strain at the end of the reverse transformation (σAf , εAf ).
These parameters are obtained from experimental SMA wire
data. The stress–strain relationships on different paths in Fig. 6,
which simulate the pseudoelastic behavior of SMAs, are defined as
follows.

Paths O–A and E–O (elastic–fully austenite)

σ = EAε. (5)

Path A–B (forward transformation)

σ = σMs +
σMf − σMs

εMf − εMs
(ε − εMs) . (6)

Path B–D (fully martensite)

σ = σMf + EM

ε − εMf


. (7)

Path D–E (reverse transformation)

σ = σAs +
σAf − σAs

εAf − εAs
(ε − εAs) . (8)

According to Motahari and Ghassemieh [9], if the unloading
occurs before the completion of the forward transformation or the
reloading starts before completion of the reverse transformation,
then the elastic stiffness is different from both the austenite and
martensite phase stiffnesses (paths O′–A′, A′–B′, B′–D′ and D′–O′).
The authors proposed the following expression to estimate the
tangent stiffness Em (Fig. 6):

Em =
EMEA

x (EA − EM)+ EM
, (9)

where x is defined as (εmax−εMs)/(εMf −εMs) for the unloading case
and (εmin − εAs)/(εAs − εAf ) for the loading case. εmax and εmin are
themaximumandminimumstrains before unloading or reloading,
respectively.

It has been reported that copper-based SMAs develop residual
strains when subjected to cyclic loading (partial pseudoelastic
behavior), even if the temperature is greater than Af and the
amplitude of the strain is less than the superelastic limit [1].
Accordingly, the multilinear model proposed by Motahari and
Ghassemieh [9] was modified to include the residual strain
developed by each SMA wire after each cycle.

The residual strain in the SMA wire after cycle i, (δε)i, is
considered to be a fraction (ηi) of the maximum amplitude (εmax)i
of the corresponding cycle i as follows:
(δε)i = ηi · (εmax)i . (10)

Based upon the experimental results of the current research,
the rate of residual strain, ηi, after cycle i is assumed to have an
exponential evolution in the following form:

ηi = A · e−λ·i, (11)
where A and λ are parameters obtained from experimental data.
Using the experimental data shown in Fig. 5, the values of the
parameters A and λ are 0.027 and 0.4474, respectively. Therefore,
considering a linear accumulation rule, the total (accumulated)
residual strain in the strand, after the end of cycle i, is given by

(εR)i =

i−
k=1

(δε)k . (12)

The multilinear constitutive law is displaced in the positive
strain (ε) axis of the planeσ–ε, after each cycle, by an amount equal
to the corresponding residual strain (Eq. (9)). Thus, for any given
cycle, all the characteristic strains εx (i.e. εMs, εMf , εAs, εAf ) must be
recalculated for the next cycle as

ε′

x = εx + εR. (13)
For the assignment of the tangent modulus, three possible

scenarios are considered (Fig. 7). The first scenario (Fig. 7(b))
considers that the unloading occurs before the strain reaches εMs.
No residual strains are developed in this case, because thematerial
response is within the linear elastic range. The second scenario
Fig. 7(c) assumes that the unloading occurs after the strain reaches
εMs, but before the stress, σmax, in the strand elements (i.e. wires)
reaches σAs. The tangent stiffness E24 is the slope of the straight
line connecting points F and D. The value of the unloading strain at
the end of the reverse transformation considering residual strain,
εAfR, is obtained by intersecting the unloading path F–Dwith a line
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a b

c d

Fig. 7. Model to consider residual strains.

parallel to OD starting from εR. The parameters E24, εAfR, and σmax
can be calculated using the following expressions:

E24 =
σmax − σAf

εmax − εAf
(14)

εAfR =
EA · εR + σAf − E24 · ε′

Af

EA − E24
(15)

σmax = σMf − E2 ·

ε′

Mf − εmax

. (16)

The last case (Fig. 7(d)) considers that unloading occurs after the
stress in the cable reaches σAs. In this case, while the stress in
the strand element (wire) is above σAs (path H–J in Fig. 7(d)),
the tangent stiffness Em is assigned using Eq. (8). Once the stress
in the wire is equal to or smaller than σAs, the tangent stiffness
E34 is the slope of the line JD, and the strain at the end of the
reverse transformation considering residual strain εAfR is computed
by intersecting the unloading path J–K with a line parallel to OD
starting from εR. The value of σmax is computed using Eq. (16), and
the parameters E34 and εAfR can be calculated using the following
expressions:

E34 =
σAs − σAf

ε∗

As − ε′

Af
(17)

εAfR =
EA · εR + σAf − E34 · ε′

Af

EA − E34
, (18)

where

ε∗

As = εmax −
(σmax − σAs)

Em
. (19)

It is envisioned that the applications of CuAlBe strands will be re-
stricted to the superelastic response; thus the proposed analytical
model has been validated within this range of deformation.

6. Results and discussion

In Fig. 8, comparisons between experimental data andpredicted
strand responses (based on the proposed analytical model) are
presented for the twisted wire configurations for both patterns of
controlled displacements up to 2% strain. The parameters used to
define the constitutive law of CuAlBe SMA wires are the following
(Fig. 6): EA = 57,000 MPa; EM = 32,633 MPa; σMs = 340 MPa;
σMf = 580.5 MPa; and σAf = 180 MPa. These parameters were
obtained from the parallel strand tests. The value of EA is the
0
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Fig. 8. Experimental and predicted responses for twisted strand (a) constant strain
amplitude, (b) increasing strain amplitude.

average of the austenite elastic stiffness considering both parallel
strand tests, while the rest of the parameters were calibrated using
the data of one parallel strand because one wire of the other
strand failed during the test at constant strain amplitude. The
slope between the stresses σMs and σMf was obtained by a linear
regression analysis of measurements on the strain interval [1%,
2%] enforcing that the maximum stress measured belonged to this
curve. The value of σMs was calculated by intersecting the curve
between stresses σMs and σMf and the elastic path OA (Fig. 6). The
slopes EM (curve B–D) and between stresses σMs and σAf (curve
D–E) were also obtained by linear regression analyses considering
strains in the ranges [1.5%, 2%] and [0.5%, 1.5%], respectively (Fig. 6).
The value of the stressesσAs andσAf were computed by intersecting
the curves B–D and D–E and D–E and O–A, respectively.
The numerical simulations overestimate the strand response
(stress–strain curves) by no more than 20% for both types of strain
pattern. This behavior is due to the fact that the multilinear one-
dimensional constitutivemodel selected for numerical simulations
is not effective in fully capturing the nonlinear CuAlBe strand
response. The proposed model, however, adequately predicts the
maximum strand axial stress, the equivalent viscous damping, and
the residual strain at each strain cycle, as discussed with respect to
subsequent figures (Figs. 9 and 10).

The values of the equivalent viscous damping, ζ , for both strand
types and individual wires, considering test results and numerical
simulations, are shown in Fig. 9 as a function of the maximum
equivalent strain amplitude. This parameter is calculated as the
energy loss per cycle divided by 4π times the secant elastic strain
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Fig. 9. Equivalent viscous damping versus strain.

energy per cycle. For all the cases analyzed, the equivalent viscous
damping values increasewith increasing levels ofmaximumstrain.
The maximum value of ζ is equal to 4%, reached at a maximum
strain equal to 5%, which is considered a moderate value. The
predicted values are comparable to the experimental values for
strains larger than 1%, with errors between 10% and 20% with
respect to the experimental values, for both types of strand
configuration. For strains below 1%, the numerical model predicts
very low equivalent viscous damping values due to the flag-shaped
constitutive model of the SMA used in this research, whereby the
predicted strand response is basically elastic for low strains.
The variations of the equivalent elasticmodulus, residual strain,
and maximum strain with respect to the maximum strain at each
cycle for both types of strand configuration are shown in Fig. 10.
Numerical simulations show that the equivalent elastic modulus
of the twisted strands is smaller than the equivalent elastic mod-
ulus of the parallel strands (52 GPa and 58 GPa, respectively),
and their values remain nearly constant for equivalent strain am-
plitudes up to 2.2%. This conclusion is supported by the experi-
mental data (Fig. 10(a)), which shows that the equivalent elastic
modulus of both types of strand configuration remain constant
up to a maximum strain of 3%. For this strain range, variations of
the predicted values with respect to the average experimental val-
ues are found to be no more than 4% for the twisted strand con-
figuration and 1% for the parallel strand configuration. For larger
values of the maximum strain, the equivalent elastic modulus
decreases, which indicates that the martensite phase is increas-
ingly retained after unloading. Thus, it may be concluded that the
strands have pseudoelastic behavior up to maximum equivalent
strain amplitudes of 3%. Moreover, the residual strains increase as
the maximum equivalent strain amplitudes get larger (Fig. 10(b)),
but, for values below 3%, the residual strains are smaller than
0.5%, which corroborates the fact that a maximum strain of 3%
may be considered as the limit of superelastic behavior. The pre-
dicted values of residual strains compare quite well with experi-
mental data (error with respect to experimental data less than 2%)
for both types of strand configuration. In Fig. 10(c), comparisons
between predicted and measured maximum stress values for in-
creasing strain cycles for both types of strand configuration are
presented. The strain cycle values vary from 0.5% to 2.2%, values
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that are within the superelastic range of the strands previously de-
fined. As the values of the strain cycle increase, the predicted and
measured maximum stress values at each strain cycle increase as
well. The predicted values of the maximum stress overestimate
the experimental values by 1–7% for strains greater than 1% and
by 2–20% for strains less than 1% relative to the experimental val-
ues. The increase of the range of variation for smaller strains is
associated to the limitations of the constitutive model previously
discussed.

Based on the numerical formulation of the proposed model,
some of the variables that characterize strand response are the
stress–strain cycles, the martensite start critical stress σMs, and
the equivalent viscous damping value. As such, using the proposed
numerical model, parametric analyses are performed to study
the dependence of these variables on the strand configuration.
To show the capabilities of the proposed numerical model, in
this paper, only the helix angle of the strand was varied to
obtain different strand configurations, keeping other variables
such as the number of wires, wire radius, and strand cross-
section configuration constant. For this particular analysis, the
helix angle of the strand ranges from 0° to 20°, and the numerical
simulation curves presented in Fig. 11(a)were computed for a fixed
equivalent strain amplitude of 2.2% using the same law for the
rate of residual strain as in Fig. 8. As the helix angle of the strand
increases, the strand response gets more flexible; the maximum
stress developed by the strand decreases up to 8% and the strain at
which the austenite–martensite transformation begins increases
by approximately 25% with respect to the parallel configuration
strand (0° in Fig. 11(a)). In addition, the energy loss per cycle and
equivalent viscous damping values diminish slightly as the helix
angle gets larger. In the particular case of the viscous damping
parameter (Fig. 11(b)), their values did not decrease more than
5% with respect to the value associated to the parallel strand
configuration for the entire range of helix angle considered.

7. Conclusions

CuAlBe twisted and parallel strands were tested in tension, and
theirmechanical characteristicswere determined. An analytical 2D
model, developed by previous researchers, was extended in order
to simulate the CuAlBe strand response under cyclic tension. This
model was calibrated to reproduce the strand response within the
superelastic deformation range.

Strand equivalent stress–strain cycles showed similar behavior
to those obtained from a single wire. For each equivalent strain
amplitude, the hysteretic response stabilized after the first cycle.
A superelastic limit of 3% was determined based on the variation
of the strand stiffness and residual deformations. The equivalent
viscous damping increased with equivalent strain amplitude,
reaching a value of 4% for strains of 5%, which is considered a
moderate value.

According to the comparisons presented in this research
between predicted and experimental values, the proposed ana-
lytical model adequately predicts, for both types of strand con-
figuration, the maximum stresses developed, residual strains,
equivalent elasticmodulus, and equivalent viscous damping values
for the different equivalent strain amplitudes considered within
the superelastic range of deformation. Although the equivalent vis-
cous damping decreases for larger helix angles, from a practical
point of view that loss is irrelevant compared to the advantage of
handling a twisted strand. Additional analyses, however, especially
on the evolution law that describes the accumulation of CuAlBe
wire residual strain after each cycle and the constitutive model se-
lected for CuAlBewires that consider strains beyond the superelas-
tic limit, are needed to validate the numericalmodel. The size of the
wires used to fabricate the strands tested in this study is compara-
ble to the size used to fabricate actual cables. Therefore, the behav-
ior of larger cables and strands may be studied analytically, using
the model proposed and calibrated in this research, and conclu-
sions regarding energy dissipation, maximum stresses, and resid-
ual deformations can be obtained. However, these conclusions will
need to be validated against experimental data for full-size speci-
mens, which are currently unavailable.

There are a number of additional challenges that must be over-
come before going to an actual application, including fabrication
issues, such as the process of twisting and heat treating the cable,
cost issues, and fatigue and fracture issues. They have not been ad-
dressed in this work, considering that this is a first approach to as-
sess the feasibility of using these cables.
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